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Abstract 

Controversies around net energy metering threaten to disrupt the distributed solar photovoltaic 
(PV) markets in many US states. Residential PV systems are particularly dependent on net-
metering for their economic viability because of the mismatch between residential load profiles 
and PV generation. However, with the cost of lithium-ion batteries rapidly falling, energy storage 
may soon provide an alternative to net-metering, allowing the residential PV market to persist 
without net-metering. This paper uses a nonlinear optimization model to determine the optimal 
sizing and operation of a residential PV + lithium-ion battery system under a variety of cost 
assumptions and rate structures. It is shown that the cost effectiveness of energy storage and PVs 
depends heavily on the specific retail rate structure considered. While much of the US is several 
years away from lithium-ion batteries becoming economic for residential applications, Hawaii is 
already nearing that threshold. 

Introduction 

Battles are being waged over net-metering in states across the US. While net-metering has 
formed the foundation for exponential growth of the distributed solar industry and for the 
creation of multibillion-dollar companies like Solar City, electric utilities argue that photovoltaic 
(PV) users are not paying their fair share of transmission and distribution costs. In 2013, at least 
eight state Public Utilities Commissions (PUCs) undertook reviews of their net-metering 
policies. In some states, such as Ohio and Arkansas, the PUCs considered expanding their net-
metering programs. However, in most of these states, the PUCs considered eliminating or 
limiting net-metering, or adding additional charges to net-metering customers. In Idaho for 
instance, the PUC considered levying a monthly service charge and a monthly capacity charge 
on customers with net-metered systems. In Louisiana, the PUC considered reducing 
compensation for net-metered systems from the retail rate to the wholesale rate.1  

Nowhere has the battle over net-metering been fiercer than in Arizona, where Arizona Public 
Service (APS), the state’s largest utility, asked for massive fees to be imposed on net-metered 
customers. Thus far, most PUCs have sided with the solar industry and have maintained their 
net-metering policies. The Arizona PUC did impose a fee of $0.70/kw-month, however, this was 
only about 10% of what APS had requested.2 While the solar industry appears to have largely 
won the first round of net-metering battles, the fight is far from over. It may not be long before 
PUCs begin to impose further restrictions on net-metering.  

It is often argued that without net-metering, the distributed solar industry would grind to a halt. 
However, with the costs of energy storage rapidly decreasing, this may not always be the case. 
Net-metering is critical for residential PV systems because their generation does not align well 
with typical residential load profiles (See Figure 1). Thus without compensation for electricity 
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sent back to the grid, PV systems would 
have to be undersized in order to avoid 
wasting their excess generation during the 
middle of the day. 

Energy storage may soon provide a viable 
alternative to net-metering by shifting PV 
generation from mid-day to the evening. A 
recent study by the Rocky Mountain 
Institute titled “The Economics of Grid 
Defection” found that with the cost of 
lithium-ion batteries rapidly falling, 
completely disconnecting from the grid 

may soon be an economically viable option. The study found that even with conservative 
assumptions about technology improvement, off-grid solar+battery systems will be cheaper than 
buying electricity at retail rates in California by 2037 (see Figure 2). However, when more 
aggressive technology assumptions, 
consistent with recent progress, were 
applied, it was found that off grid 
systems will be economic in 
California by 2020, and in much of the 
rest of the United States in the 
following decade.3 

Unless utilities opt for high monthly 
charges on all residential customers, 
however, disconnecting from the grid 
is unlikely to become the cheapest 
option. Doing so requires battery 
systems to be significantly oversized 
to cover long periods without sunlight. 
Instead, customers, even with limited 
or no net-metering, are likely to remain 
grid connected, sizing their battery 
system to shift PV generation to the 
evening, but using the grid on cloudy days. This paper examines the factors that drive the 
economics of such an arrangement and seeks to determine at what price lithium ion batteries 
could effectively replace net-metering. It also examines how the batteries would be operated, and 
what impact this transition would likely have on utility revenues. 

System Setup and Input Data 

The base case model assumes a grid tied, AC-coupled, PV and Lithium-ion battery system as 
shown in Figure 3. Electricity generated by the PV system is converted to AC by micro-
inverters, and can then be used to power loads, can be converted back to DC in order to charge 
the battery, or can be sent back to the grid without compensation. 

Figure 2 – Project Levelized Cost of Energy from PV+Storage vs.
Projected Residential Retail Rates (from RMI Report) 

Figure 1 – Typical PV Generation and Residential Load Profiles 
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In order to characterize this system, a 
number of data inputs including PV 
output, load profiles, rate structures, and 
efficiencies of the various components 
were required. Hourly solar generation 
profiles and typical residential load 
profiles were generated based on 
Typical Meteorological Year 3 (TMY3) 
data. The hourly solar generation was 
simulated using the National Renewable 
Energy Laboratory (NREL’s) System 
Advisor Model (SAM). Load profiles 
were taken from the OpenEI database of 
residential load profiles. 4 

The base model uses TMY3 data from 
Phoenix Arizona, within the service territory 
of APS. It also assumes an APS residential 
time of use (TOU) rate structure shown in 
Figure 4.5 It assumes 93% charging efficiency, 
and a 93% discharging efficiency (including 
the inverter). The efficiency of the micro-
inverters is not considered, since the PV 
production outputs of SAM already take into 
account inverter losses. A discount rate of 5% 
is applied in the base case and a PV lifetime 
of 20 years is assumed. 

Degradation of the battery is modeled using 
the equation: cycle life = 1,000,000 * (Depth 
of Discharge*100) -1.45. This formulation was 
obtained by curve fitting data provided in a 
report by the Pacific Northwest National 
Laboratory.6 

Other factors such as the degradation of the PV system, operation and maintenance (O&M) 
costs, and utility rate escalation are neglected in this analysis. The net present value of a system 
is determined based on capital expenditures for the PV and battery systems and savings from 
decreased electricity bills, and does not include the value of any reliability or backup power 
services that could be provided by the battery system. 

The major data inputs and their sources are summarized in Table 1. 

Figure 3 – System Layout 

Figure 4 - APS Residential Time of Use Rate Structure 
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Table 1 – Summary of Data Sources 

Input Name Value/Description Data Source 
Rate Structure Cost of electricity during each hour of 

the year. See Figure 4 for more details. 
OpenEI7 

PV Generation Hourly PV generation Simulated with SAM using 
TMY3 weather files8 

Load Profile Hourly electricity demand OpenEI9 
Battery 
Degradation 

Lifecycle of the battery depends on how 
it is cycled. This effect was modeled with 
the equation: cycle life = 1,000,000 * 
(Depth of Discharge *100) -1.45 

Pacific Northwest National 
Laboratory10 

The Model 

Given these inputs, as well as values for the installed cost of PVs and battery systems, the model 
seeks to determine the optimal PV and storage system sizing and the optimal operation of the 
battery over the course of a year. The model, presented below, is a storage model with 
continuous variables, a nonlinear objective function and nonlinear constraints. The model 
assumes perfect knowledge of future PV generation and electricity load. The inherent uncertainty 
present in both of these parameters can be better managed with machine learning than with 
optimization. 

The condensed mathematical form of the model is as follows: 
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A few features of the model deserve additional attention: 

• The model forces the battery to be emptied completely each night. This assumption
greatly reduces the computational intensity of the model, as it allows the model to
optimize the operation of the battery over the course of each day separately. It also
simplifies the calculation of depth of discharge for each day. Simulations run with a
simplified linear formulation of the model suggest that this assumption is reasonable. The
simplified linear model found that the battery would nearly always be empty at night
even when the constraint was removed. Using this simplified model it was also found that
the effect of this constraint on the objective function is negligible, however this
assumption could break down for very cheap batteries and PVs or extremely high retail
electricity rates. In these cases it could become optimal to oversize both systems and
store excess PV generated electricity for use on cloudy days.

• A second simplifying assumption applied in most of the model runs is that the battery has
no charging rate or discharging rate limitations. Because the battery is usually charged or
discharged over the course of several hours, this assumption has little effect on the
results. In a sensitivity analysis, it was found that power limitations of the battery had no
effect on the objective function value or the system sizing, as long as the battery was able
to fully charge within four hours and fully discharge within four hours.

• The model runs for only one year and annualizes the capital costs of the battery and PV
system by using capital recovery factors (CRFs). While the model would ideally choose
whether or not to replace the battery in each year of a multi-year simulation, this would
require the introduction of binary variables, which cause the SNOPT solver to fail.
Because the model only runs for one year and capital costs are annualized, all objective
function values reported are annual.

• In order to calculate the CRF of the battery, it is necessary to determine the battery
lifetime. The battery lifetime, in turn, depends on how the battery is cycled. The
dependence of the battery life on the number of cycles, and the dependency of the CRF
on the lifetime are both nonlinear, leading to a nonlinear objective function.

• As discussed above, the cycle life of the battery is assumed to be given by cycle life =
1,000,000 * (Depth of Discharge *100) -1.45. This formulation is based on data presented
in a 2008 report by the Pacific Northwest National Laboratory.11 Because lithium-ion
batteries have seen significant improvement over the past six year, these values may no
longer be accurate. For this reason, the sensitivity of results to this cycle life assumption
is further investigated in a later section. Additionally, it is not clear what depth of
discharge should be used in the equation above. Three options were considered: the
maximum depth of discharge over the course of the year, the average depth of discharge
over the course of the year, or the sum of daily degradations over the course of the year.
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While each of these options is examined further in a later section, the results presented in 
this paper were obtained using the last of these three options. This option results in the 
formulation:  

To see the motivation for this formulation, imagine the following scenario: 
- The depth of discharge of the first cycle is 72.2%, thus the cycle life should be

2000 cycles, and 1/2000 of the battery life has been used up. 
- The depth of discharge of the second cycle is 54.6%, implying a cycle life of 3000

cycles. Thus another 1/3000 of the battery life has been used up. 
Over the course of these two days, 1/1200 of the battery life has been used up. If the 
battery continues to be cycled in this fashion, we would expect it to last for 2/(1/1200) = 
2400 cycles. The equation shown above is simply the application of this logic to an entire 
year. 

• Finally, because the battery is emptied each night, the depth of discharge for a given day 
is just the extent to which the battery if filled. This allows the operation of the battery to 
be regulated by the constraint Sd,h ≤ SB * DODd . This constraint is nonlinear.

Results 

Base Case: Phoenix Arizona 

The initial application of the model was to Phoenix Arizona, within the service territory of APS, 
the epicenter of the battle over net-metering. If net-metering were removed today, with current 
after-incentive installed PV costs of around $2.50/watt and lithium ion battery costs of around 
$500/kWh, the model finds an optimal solution of installing 1.1 kW of PVs and no battery 
system.12, 13 The optimal PV system is so small because of the misalignment between generation 
and load. In practice, the cost of such a small PV systems would be dominated by permitting, 
labor, and other soft costs, resulting in a higher price. Thus if net-metering were removed today, 
residential solar installations would likely cease in Arizona. 

A second optimization was run for the year 2025. In this scenario residential solar costs were 
assumed to fall to the current utility scale cost of around $2/watt, lithium-ion battery costs fall to 
the DOE 2022 target of $125/kWh, and electricity rates increase by 3% per year.14, 15 The results 
are summarized in Table 2. These results suggest that lithium-ion batteries would not completely 
replace the benefits of net-metering (a PV system under net-metering would likely be larger than 
2.43 kW), however, at these prices, battery storage could make PVs a viable option even without 
net-metering. In this 2025 case, customer bills would decrease by 63.4% and utility revenues 
would decrease by a corresponding amount. However, since the utility’s peak demand is also 
lowered, further analysis would be required in order to determine the impact on utility profit. 
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Table 2 – APS comparison of current scenario and 2025 scenario 

2014 2025 
After Incentive PV Cost ($/W) 2.50 2.00 
After Incentive Battery Cost ($/kWh) 500 125 
Utility Rate Escalation 1 (1.03)11 = 1.38 
Objective Function Value ($) 39.59 529.84 
Optimal PV Size (kW) 1.1 2.4 
Optimal Battery Size (kWh) 0 22.0 
Decrease in Electricity Bill (%) 19.3 63.4 

In order to better understand the influence of battery cost and PV cost on battery and PV sizing, a 
sensitivity analysis was performed, varying PV price between $1.00/W and $4.00/W and battery 
price between $100/kWh and $400/kWh. The results are presented in Figures 5 through 7.  

As expected, the objective function value increases as PVs and batteries get cheaper. The less 
intuitive results appear in Figures 6 and 7. As shown in figure 6, a very large battery system 
becomes optimal when batteries are very cheap and PVs are expensive. In this situation, the 
batteries are used primarily for arbitraging the difference in price between the different periods 
of the TOU rate. Perhaps an even more 
counterintuitive result is shown in Figure 
7. The optimal PV size is largest when the
cost of batteries is around $200/kWh, but 
decreases with cheaper, or more expensive 
batteries. This result is a product of the 
specific rate structure being considered. 
As can be seen in Figure 6, there is no 
opportunity for energy arbitrage with 
batteries costing more than $150/kWh, 
thus the value of PVs is higher when 
batteries cost $200.  Figure 5 - Objective Function ($) 

Figure 6 - Optimal Battery Size (kWh) Figure 7 - Optimal PV Size (kW)
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Flat Rates: Hawaii 

Because many of the conclusions of the APS analysis were highly dependant on the specific rate 
structure considered, a second location and rate structure were chosen as a point of comparison. 
The RMI Report identifies Hawaii as the first place where off grid systems will become 
economic.16 Thus a similar analysis was undertaken for Hawaii. This analysis is especially 
pertinent for Hawaii because residential solar installations are beginning to overwhelm the grid 
in many locations. Last year, Hawaiian Electric Company (HEC), Hawaii’s largest utility 
abruptly halted the interconnection of new residential systems on Oahu, claiming that their 
system could not handle more solar. Energy storage, however, might provide a way around this 
dilemma without major investments in centralized infrastructure.17  

While HEC offers a variety of rate structures, a flat rate of $0.351/kWh, the average residential 
retail price, was used to approximate HEC’s very gradual tiered rate structure. Because there is 
only a $0.03 difference between the lowest and highest tier, this is a reasonable approximation.18  

Given this very high, flat rate structure, batteries may 
already provide a viable alternative to net-metering. 
At a battery cost of $400/kWh, the optimal battery 
size is 6.2 kWh and the optimal PV size is 4.07 kW. 
Figure 8 shows the optimal PV size as a function of 
battery price. Not only does this graph demonstrate 
the potential of batteries to allow for large residential 
PV systems in Hawaii, but it also demonstrates that 
unlike with the APS TOU rate structure, optimal PV 
size shows a simple negative correlation with battery 
cost. 

Sensitivity to Formulations of Cycle Life 

As previously discussed, the formulation of 
battery degradation used to obtain the results 
above involved calculating the degradation 
that occurred during each day, and then 
summing these values. However, two other 
formulations were also considered for 
calculating the cycle life of the battery. They 
involve utilizing the maximum DOD or the 
average DOD. In order to compare these three 
methods, each was run for the Arizona Base 
Case, with a PV cost of $1.50/watt and a 
battery cost $200/kWh. The distribution of 
DODs over the course of a year is shown in 
Figure 9 for each of these assumptions.  Figure 7 – Daily Variation in Depth of Discharge 

Figure 6 – Hawaii Dependence of Optimal PV Size on 
Battery Cost (assumes PV price of $2.50/W installed)  
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As can be seen from the figure, calculating the cycle life based solely on the maximum DOD 
causes the battery to be cycled to the max DOD nearly every day. Using the average DOD has 
the opposite effect, causing wide variation in how the battery is cycled. On weekends and during 
the winter, it tends to be cycle very little, while in the summer it often exhibits a DOD of 100%. 
Finally, the Daily Degradation model exhibits an intermediate level of variation, but never fully 
cycles the battery. 

The sensitivity of other optimization outputs to the degradation formulation is displayed in Table 
3. The important takeaway is that while the objective function value varies by less than 40%,
these different approaches to modeling degradation lead to greater differences in the optimal size 
and operation of the battery.  

Table 3 – Comparison of Different Cycle Life Formulations  

Max DOD Daily Degradations Avg DOD 
Objective Function Value ($) 152.36 186.47 219.45 
Optimal PV Size (kW) 2.47 2.86 2.76 
Optimal Battery Size (kWh) 0.27 7.45 15.65 
Lost Utility Revenue (%) 33.6 50 62.1 
Cycle Life 5271 5272 5799 

A second concern about the model’s treatment of battery degradation is that the data used are 
derived from a 2008 report. Newer lithium-ion batteries may have longer cycles lives, however, 
newer data is not readily available. The one available data point comes from A123 systems, 
which claimed that its battery could be cycled at 100% DOD approximately 8000 times.19 This 
claim is based on laboratory testing and is likely an overstatement, however, in order to evaluate 
the sensitivity of results to changes in this 2008 data, the Daily Degradation version of the model 
was run with the same inputs as above, except with the cycle life increased by a factor of 2. Thus 
cycle life = 2,000,000 * (Depth of Discharge *100) -1.45.

This change causes the optimal cycle life to increase from 5272 cycles to 7335 cycles while the 
battery is cycled more fully. It also results in a significantly higher optimal battery size and 
objective function value of 15.4 kWh and $294.02 respectively. The optimal size of the PV 
system decreases slightly to 2.59 kW. This implies that the effect of a longer-lived battery 
depends greatly on the rate structure in which it is deployed. More generally, these results 
suggest that the battery degradation rate can have a major impact on the optimization results and 
it would be extremely useful to have more up-to-date data. 

Robustness and Problems with Convergence 

Because the model is highly nonlinear, it is not guaranteed to find the global optimal solution. A 
sensitivity script was run to test the model’s robustness with various default values of the 
decision variables. The model converged to the same optimal solution in nearly all cases. 
However, in rare cases, the solver was unable to satisfy the criteria for an optimal solution. 
Nonetheless, in these cases, the model returned a solution that was very similar or identical to the 
optimal solution. 
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Other challenges were observed when running the PV and battery price sensitivity script. For 
certain values of the input parameters, the model was unable to verify that it had reached a local 
optimal solution. For some of these points, SNOPT was unable to improve the objective function 
value, but could not satisfy the convergence criteria. For others, the model ran for long periods of 
time without improving the objective function and was eventually forced to return its current 
solution. These cases did not follow a clear pattern, however, they tended to occur only for high 
PV and/or storage system costs associated with objective function values of approximately zero. 
And, while these model runs did not necessarily find optimal values, they did return values that 
were consistent with observed trends. Because these convergence failures were rare and did not 
appear to significantly impact the results, they were not examined further. 

Future Research 

The greatest potential flaw in this optimization model lies in its treatment of degradation. As 
previously discussed, the way that degradation is modeled has a significant impact on the 
optimal size of a battery to be installed. A better characterization of degradation would require 
more up-to-date data, and a clearer understanding of the underlying chemistry and physics of a 
lithium ion battery. A more accurate formulation would also take into account temperature and 
calendar life. Because of the secrecy of the battery industry, this data may be difficult to obtain. 
However, such data would allow for more rigorous and meaningful academic evaluations of 
optimal battery deployment. 

Another way that the model could be improved would be to add the capability to consider tiered 
rate structures. Such rate structures, which exist in many states including California, can provide 
a strong incentive for installing residential PV systems, and with modification, this model could 
help to examine how these rate structures would effect the cost effectiveness of energy storage. 

A third addition to the model would be to allow electricity flowing into the grid to be reimbursed 
at the wholesale rate. It has often been suggested, and several PUCs have considered the idea, 
that distributed generators should be compensated at the avoid cost (i.e. the wholesale rate) rather 
than at the retail rate. This is an intermediate step that PUCs may choose to take rather than 
completely eliminating net-metering. In such a scenario, PVs would be more cost effective than 
they would be with the complete elimination of net-metering, however, energy storage would be 
less cost effective. With modification, this model could help to quantify the effect of such a 
policy on PVs and energy storage. 

Finally, without modifying the model, there are numerous additional sensitivity analyses that 
could be run and rate structures that could be considered. One potential application would be a 
comparison with the RMI study to determine how the timeline for economic grid connected 
residential storage compares with the timeline for off-grid systems. Energy storage systems 
would also likely perform well under real-time pricing, which could be simulated by expressing 
a specific electricity price for each hour or even each 15-minute period of the year.  
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Conclusions 

It is clear from the model results presented above that lithium ion batteries, with costs around 
$500/kWh cannot currently serve as a replacement for net-metering in Arizona. However, with 
battery prices projected to reach $200/kWh by 2020 and to continue declining for the foreseeable 
future, the day may come when energy storage will represent a real alternative.20 Depending on 
how utilities handle the expansion of distributed solar, customers may opt to fully disconnect 
from the grid, as described in the RMI report. However, if net-metering is simply removed, the 
optimal response for customers may be to install undersized storage systems that decrease, but 
do not completely eliminate their dependence on the grid. 

The best choice for future utility customers may depend heavily on their precise rate structures 
and locations. In cases with high flat rate structures, the optimal solution and its dependence on 
PV and battery costs may be relatively intuitive. However for more complex rate structures, the 
optimal solution for customers may be less clear. Thus utilities and their regulators will need to 
consider energy storage carefully in establishing rate structures. The long-term fate of net-
metering is uncertain, but the challenges that distributed generation poses to utilities are likely to 
persist even if net-metering is limited or removed. The future evolution of the electric utility and 
the electricity grid will depend on how utilities respond. 
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